Because the parameters that we would like to cross validate are parameters of model.penalty, model.datafit or model.solver, we are not comaptible: ```python from skglm.utils.data import make_correlated_data from skglm.datafits import Quadratic from skglm.penalties import L1 from skglm import GeneralizedLinearEstimator from sklearn.model_selection import GridSearchCV import numpy as np X, y,_ = make_correlated_data() model = GeneralizedLinearEstimator(Quadratic(), L1(alpha=1)) alpha_grid = np.geomspace(1, 1e-2) cv = GridSearchCV(model, param_grid={"alpha": alpha_grid}, scoring="neg_mean_squared_error").fit(X, y) ``` gives `TypeError: GeneralizedLinearEstimator.__init__() got an unexpected keyword argument 'penalty__alpha'` How could we solve this? Maybe @glemaitre or @agramfort have an idea?