Skip to content

Commit caae1c5

Browse files
committed
Update examples for MhaMlp models
1 parent b06c782 commit caae1c5

File tree

3 files changed

+9
-6
lines changed

3 files changed

+9
-6
lines changed

examples/exam_mha_mlp_binary_classification.py

Lines changed: 4 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -25,9 +25,10 @@
2525

2626
## Create model
2727
print(MhaMlpClassifier.SUPPORTED_CLS_OBJECTIVES)
28-
model = MhaMlpClassifier(hidden_layers=(100,), act_names="ELU", dropout_rates=None, act_output=None,
29-
optim="BaseGA", optim_params={"name": "WOA", "epoch": 100, "pop_size": 30},
30-
obj_name="F1S", seed=42, verbose=True)
28+
model = MhaMlpClassifier(hidden_layers=(100,), act_names="ReLU", dropout_rates=None, act_output=None,
29+
optim="BaseGA", optim_params={"name": "WOA", "epoch": 100, "pop_size": 30},
30+
obj_name="F1S", seed=42, verbose=True,
31+
lb=None, ub=None, mode='single', n_workers=None, termination=None)
3132
## Train the model
3233
model.fit(X=data.X_train, y=data.y_train)
3334

examples/exam_mha_mlp_multi_class_classification.py

Lines changed: 3 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -27,9 +27,10 @@
2727
model = MhaMlpClassifier(hidden_layers=(50,), act_names="Tanh",
2828
dropout_rates=None, act_output=None,
2929
optim="BaseGA", optim_params={"name": "WOA", "epoch": 100, "pop_size": 20},
30-
obj_name="F1S", seed=42, verbose=True)
30+
obj_name="F1S", seed=42, verbose=True,
31+
lb=-2., ub=2., mode='single', n_workers=None, termination=None)
3132
## Train the model
32-
model.fit(X=data.X_train, y=data.y_train, lb=-1., ub=1.0)
33+
model.fit(X=data.X_train, y=data.y_train)
3334

3435
## Test the model
3536
y_pred = model.predict(data.X_test)

examples/exam_mha_mlp_regression.py

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -27,7 +27,8 @@
2727
## Create model
2828
model = MhaMlpRegressor(hidden_layers=(30, 15,), act_names="ELU", dropout_rates=0.2, act_output=None,
2929
optim="BaseGA", optim_params={"name": "WOA", "epoch": 10, "pop_size": 30},
30-
obj_name="MSE", seed=42, verbose=True)
30+
obj_name="MSE", seed=42, verbose=True,
31+
lb=None, ub=None, mode='single', n_workers=None, termination=None)
3132
## Train the model
3233
model.fit(data.X_train, data.y_train)
3334

0 commit comments

Comments
 (0)