You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
|[Hello World!](examples/hello_world)| Introduction to semantic extraction and classification using fenic's core operators through error log analysis. |
57
-
|[Enrichment](examples/enrichment)| Multi-stage DataFrames with template-based text extraction, joins, and LLM-powered transformations demonstrated via log enrichment. |
58
-
|[Meeting Transcript Processing](examples/meeting_transcript_processing)| Native transcript parsing, Pydantic schema integration, and complex aggregations shown through meeting analysis. |
59
-
|[News Analysis](examples/news_analysis)| Analyze and extract insights from news articles using semantic operators and structured data processing. |
60
-
|[Podcast Summarization](examples/podcast_summarization)| Process and summarize podcast transcripts with speaker-aware analysis and key point extraction. |
61
-
|[Semantic Join](examples/semantic_joins)| Instead of simple fuzzy matching, use fenic's powerful semantic join functionality to match data across tables. |
62
-
|[Named Entity Recognition](examples/named_entity_recognition)| Extract and classify named entities from text using semantic extraction and classification. |
63
-
|[Markdown Processing](examples/markdown_processing)| Process and transform markdown documents with structured data extraction and formatting. |
64
-
|[JSON Processing](examples/json_processing)| Handle complex JSON data structures with semantic operations and schema validation. |
65
-
|[Feedback Clustering](examples/feedback_clustering)| Group and analyze feedback using semantic similarity and clustering operations. |
66
-
|[Document Extraction](examples/document_extraction)| Extract structured information from various document formats using semantic operators. |
|[Hello World!](examples/hello_world)| Introduction to semantic extraction and classification using fenic's core operators through error log analysis. |[](https://colab.research.google.com/github/typedef-ai/fenic/blob/main/examples/hello_world/hello_world.ipynb)|
57
+
|[Enrichment](examples/enrichment)| Multi-stage DataFrames with template-based text extraction, joins, and LLM-powered transformations demonstrated via log enrichment. |[](https://colab.research.google.com/github/typedef-ai/fenic/blob/main/examples/enrichment/enrichment.ipynb)|
58
+
|[Meeting Transcript Processing](examples/meeting_transcript_processing)| Native transcript parsing, Pydantic schema integration, and complex aggregations shown through meeting analysis. |[](https://colab.research.google.com/github/typedef-ai/fenic/blob/main/examples/meeting_transcript_processing/transcript_processing.ipynb)|
59
+
|[News Analysis](examples/news_analysis)| Analyze and extract insights from news articles using semantic operators and structured data processing. |[](https://colab.research.google.com/github/typedef-ai/fenic/blob/main/examples/news_analysis/news_analysis.ipynb)|
60
+
|[Podcast Summarization](examples/podcast_summarization)| Process and summarize podcast transcripts with speaker-aware analysis and key point extraction. |[](https://colab.research.google.com/github/typedef-ai/fenic/blob/main/examples/podcast_summarization/podcast_summarization.ipynb)|
61
+
|[Semantic Join](examples/semantic_joins)| Instead of simple fuzzy matching, use fenic's powerful semantic join functionality to match data across tables. |[](https://colab.research.google.com/github/typedef-ai/fenic/blob/main/examples/semantic_joins/semantic_joins.ipynb)|
62
+
|[Named Entity Recognition](examples/named_entity_recognition)| Extract and classify named entities from text using semantic extraction and classification. |[](https://colab.research.google.com/github/typedef-ai/fenic/blob/main/examples/named_entity_recognition/ner.ipynb)|
63
+
|[Markdown Processing](examples/markdown_processing)| Process and transform markdown documents with structured data extraction and formatting. |[](https://colab.research.google.com/github/typedef-ai/fenic/blob/main/examples/markdown_processing/markdown_processing.ipynb)|
64
+
|[JSON Processing](examples/json_processing)| Handle complex JSON data structures with semantic operations and schema validation. |[](https://colab.research.google.com/github/typedef-ai/fenic/blob/main/examples/json_processing/json_processing.ipynb)|
65
+
|[Feedback Clustering](examples/feedback_clustering)| Group and analyze feedback using semantic similarity and clustering operations. |[](https://colab.research.google.com/github/typedef-ai/fenic/blob/main/examples/feedback_clustering/feedback_clustering.ipynb)|
66
+
|[Document Extraction](examples/document_extraction)| Extract structured information from various document formats using semantic operators. |[](https://colab.research.google.com/github/typedef-ai/fenic/blob/main/examples/document_extraction/document_extraction.ipynb)|
67
67
68
68
(Feel free to click any example above to jump right to its folder.)
0 commit comments