Skip to content

Commit d3842b0

Browse files
authored
docs: Main readme colab (#146)
1 parent 3cc0446 commit d3842b0

File tree

2 files changed

+26
-13
lines changed

2 files changed

+26
-13
lines changed

README.md

Lines changed: 13 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -51,19 +51,19 @@ The fastest way to learn about fenic is by checking the examples.
5151

5252
Below is a quick list of the examples in this repo:
5353

54-
| Example | Description |
55-
| ----------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------- |
56-
| [Hello World!](examples/hello_world) | Introduction to semantic extraction and classification using fenic's core operators through error log analysis. |
57-
| [Enrichment](examples/enrichment) | Multi-stage DataFrames with template-based text extraction, joins, and LLM-powered transformations demonstrated via log enrichment. |
58-
| [Meeting Transcript Processing](examples/meeting_transcript_processing) | Native transcript parsing, Pydantic schema integration, and complex aggregations shown through meeting analysis. |
59-
| [News Analysis](examples/news_analysis) | Analyze and extract insights from news articles using semantic operators and structured data processing. |
60-
| [Podcast Summarization](examples/podcast_summarization) | Process and summarize podcast transcripts with speaker-aware analysis and key point extraction. |
61-
| [Semantic Join](examples/semantic_joins) | Instead of simple fuzzy matching, use fenic's powerful semantic join functionality to match data across tables. |
62-
| [Named Entity Recognition](examples/named_entity_recognition) | Extract and classify named entities from text using semantic extraction and classification. |
63-
| [Markdown Processing](examples/markdown_processing) | Process and transform markdown documents with structured data extraction and formatting. |
64-
| [JSON Processing](examples/json_processing) | Handle complex JSON data structures with semantic operations and schema validation. |
65-
| [Feedback Clustering](examples/feedback_clustering) | Group and analyze feedback using semantic similarity and clustering operations. |
66-
| [Document Extraction](examples/document_extraction) | Extract structured information from various document formats using semantic operators. |
54+
| Example | Description | Colab |
55+
| ----------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------- | :-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
56+
| [Hello World!](examples/hello_world) | Introduction to semantic extraction and classification using fenic's core operators through error log analysis. | [![Open in Colab](docs/images/colab-badge.svg)](https://colab.research.google.com/github/typedef-ai/fenic/blob/main/examples/hello_world/hello_world.ipynb) |
57+
| [Enrichment](examples/enrichment) | Multi-stage DataFrames with template-based text extraction, joins, and LLM-powered transformations demonstrated via log enrichment. | [![Open in Colab](docs/images/colab-badge.svg)](https://colab.research.google.com/github/typedef-ai/fenic/blob/main/examples/enrichment/enrichment.ipynb) |
58+
| [Meeting Transcript Processing](examples/meeting_transcript_processing) | Native transcript parsing, Pydantic schema integration, and complex aggregations shown through meeting analysis. | [![Open in Colab](docs/images/colab-badge.svg)](https://colab.research.google.com/github/typedef-ai/fenic/blob/main/examples/meeting_transcript_processing/transcript_processing.ipynb) |
59+
| [News Analysis](examples/news_analysis) | Analyze and extract insights from news articles using semantic operators and structured data processing. | [![Open in Colab](docs/images/colab-badge.svg)](https://colab.research.google.com/github/typedef-ai/fenic/blob/main/examples/news_analysis/news_analysis.ipynb) |
60+
| [Podcast Summarization](examples/podcast_summarization) | Process and summarize podcast transcripts with speaker-aware analysis and key point extraction. | [![Open in Colab](docs/images/colab-badge.svg)](https://colab.research.google.com/github/typedef-ai/fenic/blob/main/examples/podcast_summarization/podcast_summarization.ipynb) |
61+
| [Semantic Join](examples/semantic_joins) | Instead of simple fuzzy matching, use fenic's powerful semantic join functionality to match data across tables. | [![Open in Colab](docs/images/colab-badge.svg)](https://colab.research.google.com/github/typedef-ai/fenic/blob/main/examples/semantic_joins/semantic_joins.ipynb) |
62+
| [Named Entity Recognition](examples/named_entity_recognition) | Extract and classify named entities from text using semantic extraction and classification. | [![Open in Colab](docs/images/colab-badge.svg)](https://colab.research.google.com/github/typedef-ai/fenic/blob/main/examples/named_entity_recognition/ner.ipynb) |
63+
| [Markdown Processing](examples/markdown_processing) | Process and transform markdown documents with structured data extraction and formatting. | [![Open in Colab](docs/images/colab-badge.svg)](https://colab.research.google.com/github/typedef-ai/fenic/blob/main/examples/markdown_processing/markdown_processing.ipynb) |
64+
| [JSON Processing](examples/json_processing) | Handle complex JSON data structures with semantic operations and schema validation. | [![Open in Colab](docs/images/colab-badge.svg)](https://colab.research.google.com/github/typedef-ai/fenic/blob/main/examples/json_processing/json_processing.ipynb) |
65+
| [Feedback Clustering](examples/feedback_clustering) | Group and analyze feedback using semantic similarity and clustering operations. | [![Open in Colab](docs/images/colab-badge.svg)](https://colab.research.google.com/github/typedef-ai/fenic/blob/main/examples/feedback_clustering/feedback_clustering.ipynb) |
66+
| [Document Extraction](examples/document_extraction) | Extract structured information from various document formats using semantic operators. | [![Open in Colab](docs/images/colab-badge.svg)](https://colab.research.google.com/github/typedef-ai/fenic/blob/main/examples/document_extraction/document_extraction.ipynb) |
6767

6868
(Feel free to click any example above to jump right to its folder.)
6969

docs/images/colab-badge.svg

Lines changed: 13 additions & 0 deletions
Loading

0 commit comments

Comments
 (0)