-
-
Notifications
You must be signed in to change notification settings - Fork 10.6k
Open
Labels
bugSomething isn't workingSomething isn't working
Description
Your current environment
The output of python collect_env.py
==============================
System Info
==============================
OS : Ubuntu 22.04.4 LTS (x86_64)
GCC version : (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version : Could not collect
CMake version : version 3.22.1
Libc version : glibc-2.35
==============================
PyTorch Info
==============================
PyTorch version : 2.8.0+cu128
Is debug build : False
CUDA used to build PyTorch : 12.8
ROCM used to build PyTorch : N/A
==============================
Python Environment
==============================
Python version : 3.12.11 (main, Sep 18 2025, 19:47:19) [Clang 20.1.4 ] (64-bit runtime)
Python platform : Linux-5.15.0-1053-nvidia-x86_64-with-glibc2.35
==============================
CUDA / GPU Info
==============================
Is CUDA available : True
CUDA runtime version : 12.4.131
CUDA_MODULE_LOADING set to : LAZY
GPU models and configuration :
GPU 0: NVIDIA A100-SXM4-80GB
GPU 1: NVIDIA A100-SXM4-80GB
GPU 2: NVIDIA A100-SXM4-80GB
GPU 3: NVIDIA A100-SXM4-80GB
GPU 4: NVIDIA A100-SXM4-80GB
GPU 5: NVIDIA A100-SXM4-80GB
GPU 6: NVIDIA A100-SXM4-80GB
GPU 7: NVIDIA A100-SXM4-80GB
Nvidia driver version : 535.161.08
cuDNN version : Could not collect
HIP runtime version : N/A
MIOpen runtime version : N/A
Is XNNPACK available : True
==============================
CPU Info
==============================
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 43 bits physical, 48 bits virtual
Byte Order: Little Endian
CPU(s): 256
On-line CPU(s) list: 0-255
Vendor ID: AuthenticAMD
Model name: AMD EPYC 7742 64-Core Processor
CPU family: 23
Model: 49
Thread(s) per core: 2
Core(s) per socket: 64
Socket(s): 2
Stepping: 0
Frequency boost: enabled
CPU max MHz: 2250.0000
CPU min MHz: 1500.0000
BogoMIPS: 4491.71
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperf
mperf rapl pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bp
ext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero i
rperf xsaveerptr rdpru wbnoinvd amd_ppin arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif v_spec_ctrl umip rdpid overflow_recov succor smca sme sev sev_es
Virtualization: AMD-V
L1d cache: 4 MiB (128 instances)
L1i cache: 4 MiB (128 instances)
L2 cache: 64 MiB (128 instances)
L3 cache: 512 MiB (32 instances)
NUMA node(s): 8
NUMA node0 CPU(s): 0-15,128-143
NUMA node1 CPU(s): 16-31,144-159
NUMA node2 CPU(s): 32-47,160-175
NUMA node3 CPU(s): 48-63,176-191
NUMA node4 CPU(s): 64-79,192-207
NUMA node5 CPU(s): 80-95,208-223
NUMA node6 CPU(s): 96-111,224-239
NUMA node7 CPU(s): 112-127,240-255
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Not affected
Vulnerability Retbleed: Mitigation; untrained return thunk; SMT enabled with STIBP protection
Vulnerability Spec rstack overflow: Mitigation; safe RET
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Retpolines, IBPB conditional, STIBP always-on, RSB filling, PBRSB-eIBRS Not affected
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
==============================
Versions of relevant libraries
==============================
[pip3] efficientnet_pytorch==0.7.1
[pip3] flashinfer-python==0.4.0
[pip3] mypy-extensions==1.0.0
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.8.4.1
[pip3] nvidia-cuda-cupti-cu12==12.8.90
[pip3] nvidia-cuda-nvrtc-cu12==12.8.93
[pip3] nvidia-cuda-runtime-cu12==12.8.90
[pip3] nvidia-cudnn-cu12==9.10.2.21
[pip3] nvidia-cudnn-frontend==1.15.0
[pip3] nvidia-cufft-cu12==11.3.3.83
[pip3] nvidia-cufile-cu12==1.13.1.3
[pip3] nvidia-curand-cu12==10.3.9.90
[pip3] nvidia-cusolver-cu12==11.7.3.90
[pip3] nvidia-cusparse-cu12==12.5.8.93
[pip3] nvidia-cusparselt-cu12==0.7.1
[pip3] nvidia-cutlass-dsl==4.2.1
[pip3] nvidia-ml-py==13.580.82
[pip3] nvidia-nccl-cu12==2.27.3
[pip3] nvidia-nvjitlink-cu12==12.8.93
[pip3] nvidia-nvtx-cu12==12.8.90
[pip3] open_clip_torch==2.32.0
[pip3] pytorch-lightning==2.5.2
[pip3] pyzmq==27.1.0
[pip3] segmentation_models_pytorch==0.4.0
[pip3] sentence-transformers==3.2.1
[pip3] terratorch==1.0.2
[pip3] torch==2.8.0+cu128
[pip3] torchaudio==2.8.0+cu128
[pip3] torchgeo==0.7.0
[pip3] torchmetrics==1.7.4
[pip3] torchvision==0.23.0+cu128
[pip3] transformers==5.0.0.dev0
[pip3] transformers-stream-generator==0.0.5
[pip3] triton==3.4.0
[pip3] tritonclient==2.51.0
==============================
vLLM Info
==============================
ROCM Version : Could not collect
vLLM Version : 0.11.1rc2.dev54+gde92d916f.d20251015 (git sha: de92d916f, date: 20251015)
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled
GPU Topology:
GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 NIC0 NIC1 NIC2 NIC3 NIC4 NIC5 NIC6 NIC7 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X NV12 NV12 NV12 NV12 NV12 NV12 NV12 PXB PXB SYS SYS SYS SYS SYS SYS 48-63,176-191 3 N/A
GPU1 NV12 X NV12 NV12 NV12 NV12 NV12 NV12 PXB PXB SYS SYS SYS SYS SYS SYS 48-63,176-191 3 N/A
GPU2 NV12 NV12 X NV12 NV12 NV12 NV12 NV12 SYS SYS PXB PXB SYS SYS SYS SYS 16-31,144-159 1 N/A
GPU3 NV12 NV12 NV12 X NV12 NV12 NV12 NV12 SYS SYS PXB PXB SYS SYS SYS SYS 16-31,144-159 1 N/A
GPU4 NV12 NV12 NV12 NV12 X NV12 NV12 NV12 SYS SYS SYS SYS PXB PXB SYS SYS 112-127,240-255 7 N/A
GPU5 NV12 NV12 NV12 NV12 NV12 X NV12 NV12 SYS SYS SYS SYS PXB PXB SYS SYS 112-127,240-255 7 N/A
GPU6 NV12 NV12 NV12 NV12 NV12 NV12 X NV12 SYS SYS SYS SYS SYS SYS PXB PXB 80-95,208-223 5 N/A
GPU7 NV12 NV12 NV12 NV12 NV12 NV12 NV12 X SYS SYS SYS SYS SYS SYS PXB PXB 80-95,208-223 5 N/A
NIC0 PXB PXB SYS SYS SYS SYS SYS SYS X PXB SYS SYS SYS SYS SYS SYS
NIC1 PXB PXB SYS SYS SYS SYS SYS SYS PXB X SYS SYS SYS SYS SYS SYS
NIC2 SYS SYS PXB PXB SYS SYS SYS SYS SYS SYS X PXB SYS SYS SYS SYS
NIC3 SYS SYS PXB PXB SYS SYS SYS SYS SYS SYS PXB X SYS SYS SYS SYS
NIC4 SYS SYS SYS SYS PXB PXB SYS SYS SYS SYS SYS SYS X PXB SYS SYS
NIC5 SYS SYS SYS SYS PXB PXB SYS SYS SYS SYS SYS SYS PXB X SYS SYS
NIC6 SYS SYS SYS SYS SYS SYS PXB PXB SYS SYS SYS SYS SYS SYS X PXB
NIC7 SYS SYS SYS SYS SYS SYS PXB PXB SYS SYS SYS SYS SYS SYS PXB X
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
NIC Legend:
NIC0: mlx5_0
NIC1: mlx5_1
NIC2: mlx5_2
NIC3: mlx5_3
NIC4: mlx5_4
NIC5: mlx5_5
NIC6: mlx5_6
NIC7: mlx5_7
==============================
Environment Variables
==============================
CUDA_VISIBLE_DEVICES=6
CUDA_VISIBLE_DEVICES=6
PYTORCH_NVML_BASED_CUDA_CHECK=1
TORCHINDUCTOR_COMPILE_THREADS=1
CUDA_MODULE_LOADING=LAZY
🐛 Describe the bug
google/embeddinggemma-300m
with transformers backend doesn't match the output of native vllm implementation and nor Sentence Transformers
Repro
import numpy as np
import torch
import torch.nn.functional as F
from vllm import LLM
llm_kwargs = {
"model": "google/embeddinggemma-300m",
"max_model_len": 2048,
"enforce_eager": False,
}
llm_vllm = LLM(model_impl="vllm", **llm_kwargs)
llm_transformers = LLM(model_impl="transformers", **llm_kwargs)
from sentence_transformers import SentenceTransformer # noqa: E402
sentence_transformer = SentenceTransformer(llm_kwargs["model"])
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
outputs_vllm = llm_vllm.embed(prompts, truncate_prompt_tokens=-1)
outputs_transformers = llm_transformers.embed(prompts, truncate_prompt_tokens=-1)
outputs_sentence_transformer = sentence_transformer.encode(prompts)
for prompt_idx, (
output_vllm,
output_transformers,
output_sentence_transformer,
) in enumerate(zip(outputs_vllm, outputs_transformers, outputs_sentence_transformer)):
embedding_vllm = np.array(output_vllm.outputs.embedding)
embedding_transformers = np.array(output_transformers.outputs.embedding)
embedding_sentence_transformer = np.array(output_sentence_transformer)
print("=" * 10)
print(f"Prompt {prompt_idx} embeddings ")
for check_name, check_a, check_b in [
("vllm (native vs transformers)", embedding_vllm, embedding_transformers),
(
"vllm-transformers vs sentence_transformer",
embedding_transformers,
embedding_sentence_transformer,
),
(
"vllm-native vs sentence_transformer",
embedding_vllm,
embedding_sentence_transformer,
),
]:
print(f"\t {check_name}", end=" ")
try:
np.testing.assert_allclose(check_a, check_b, atol=1e-2)
print("are close ✅")
except Exception:
cosine_similarity = F.cosine_similarity(
torch.tensor(check_a), torch.tensor(check_b), dim=0
)
print(f"are not close ❌ (cosine:{cosine_similarity:.4f})")
This outputs
==========
Prompt 0 embeddings
vllm (native vs transformers) are not close ❌ (cosine:0.0786)
vllm-transformers vs sentence_transformer are not close ❌ (cosine:0.0789)
vllm-native vs sentence_transformer are close ✅
==========
Prompt 1 embeddings
vllm (native vs transformers) are not close ❌ (cosine:0.1719)
vllm-transformers vs sentence_transformer are not close ❌ (cosine:0.1717)
vllm-native vs sentence_transformer are close ✅
==========
Prompt 2 embeddings
vllm (native vs transformers) are not close ❌ (cosine:-0.0041)
vllm-transformers vs sentence_transformer are not close ❌ (cosine:-0.0047)
vllm-native vs sentence_transformer are close ✅
==========
Prompt 3 embeddings
vllm (native vs transformers) are not close ❌ (cosine:0.0902)
vllm-transformers vs sentence_transformer are not close ❌ (cosine:0.0905)
vllm-native vs sentence_transformer are close ✅
I wonder if its d
Before submitting a new issue...
- Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.
Metadata
Metadata
Assignees
Labels
bugSomething isn't workingSomething isn't working
Type
Projects
Status
Todo