Skip to content

360CVGroup/FGCLIP-MCP

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

FGCLIP-MCP

MCP (Model Context Protocol) server for FG-CLIP embedding services. To obtain and configure the API key, please apply at https://research.360.cn/sass.

Features

This MCP server provides the following tools and resources:

Tools

  • text_embedding: Generate embedding vectors for text
  • image_embedding: Generate embedding vectors for images
  • cosine_similarity: Compute cosine similarity between two lists of vectors

Use Cases

This MCP server helps users achieve the following capabilities:

  • Image Feature Extraction: Convert images into high-dimensional vector representations for machine learning and similarity computation
  • Text Feature Extraction: Transform text into semantic vector representations with multi-language support
  • Multi-modal Similarity Computation:
    • Image-to-Image Similarity: Compare visual similarity between different images
    • Image-to-Text Similarity: Enable cross-modal retrieval, such as finding relevant images based on text descriptions
    • Text-to-Text Similarity: Calculate semantic similarity between texts

Through these capabilities, users can build powerful search engines, recommendation systems, content classification, and multi-modal AI applications.

Tool Details

text_embedding

Generate embedding vectors for input texts.

Parameters:

  • texts: A list of text strings to embed
  • model: The model to use (default: "fg-clip")

Returns:

  • saved_uris: A list of URIs where the embeddings are stored
  • success: Whether the operation succeeded
  • error_msg: Error message, if any

image_embedding

Generate embedding vectors for images.

Parameters:

  • images: A list of image URLs or base64-encoded images
  • model: The model to use (default: "fg-clip")

Returns:

  • saved_uris: A list of URIs where the embeddings are stored
  • success: Whether the operation succeeded
  • error_msg: Error message, if any

cosine_similarity

Compute cosine similarity between two lists of vectors.

Parameters:

  • uris_a: A list of URIs for the first set of embeddings
  • uris_b: A list of URIs for the second set of embeddings
  • mode: Calculation mode (default: "pairwise")
    • "pairwise": Compute similarity for vectors at corresponding positions
    • "matrix": Compute a full similarity matrix for all vector pairs

Returns:

  • similarities: Similarity values or a similarity matrix
  • shape: Shape information of the result
  • success: Whether the operation succeeded

Development & Testing

git clone https://github.com/360CVGroup/FGCLIP-MCP 
cd FGCLIP-MCP
uv venv
uv sync
source .venv/bin/activate
export MCP_API_KEY=your_api_key 
pytest -q

MCP Host Configuration

From pypi

{
  "mcpServers": {  
    "fgclip-mcp": {
      "command": "uvx",
      "args": [
        "fgclip-mcp"
      ],
      "env": {
        "MCP_API_KEY": "your_api_key"
      }
    }
  }
}

From local

{
  "mcpServers": {  
    "fgclip-mcp-local": {
      "command": "uv",
      "args": [
        "--directory",
        "/path_to_fgclip-mcp/src/fgclip_mcp",
        "run",
        "/path_to_fgclip-mcp/src/fgclip_mcp/__main__.py"
      ],
      "env": {
        "MCP_API_KEY": "your_api_key"
      }    
    }
  }
}

Use Case in Cursor IDE

Locate MCP Setting step1

Config MCP Setting step2

Enable MCP step3

Chat with MCP

Example: Searching for images based on given text text_2_image

Image 1 Image 2

Image URLs:

License

Apache License 2.0

About

MCP (Model Context Protocol) server for FG-CLIP embedding services.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages