This repository consists of the codebase for the implementation of the paper Failure Forecasting in Low Cost Sensors using Deep Time Series Models
datasetsdirectory consisting of the sensors data.modelsdirectory consisting of the saved models.batches.pyfile containing custom batch generator.preprocess.pymodule for preprocessing the data.train.pymodule to train model of choice on the data.test.pymodule to test the trained model.utils.pymodule contating the utility functions.
- Requires
anaconda
- Create a python 3.10 environment using anaconda →
conda create env -n failurepred python=3.10- Activate the environment →
conda activate failurepred- Run the following command to install the dependencies →
pip install -r requirements.txt- Use the following code to train the model →
python train.py -m <model_name> -t <test_type> -trb <train_balance_mode> -teb <test_balance_mode>- Run the following code to get more details on the available options and default value →
python train.py --help- Use the following code to test the model →
python test.py -m <model_name> -t <test_type> -trb <train_balance_mode> -teb <test_balance_mode>- Run the following code to get more details on the available options and default value →
python test.py --help