Skip to content

RifaAmrilSahputra/Semicolon-Model

Repository files navigation

Optimizing Facial Expression and Head Dynamics Data Processing to Enhance Depression Detection with Cutting-Edge AI Models

This dataset contains facial behavior and head movement data used to predict depression episodes. It includes features such as Action Units (AUs), head movement metrics, and other facial structure indicators.


Dataset Structure

The dataset consists of the following columns:

Column Description
AU24 Action Unit 24 activation (Lip Pressor)
Eye_Open_Avg Average eye openness
Facial_Structure Calculated facial structure value based on geometric features
AU23 Action Unit 23 activation (Lip Tightener)
AU01 Action Unit 01 activation (Inner Brow Raiser)
AU07 Action Unit 07 activation (Lid Tightener)
AU02 Action Unit 02 activation (Outer Brow Raiser)
AU_Smile Activation value of smile-related Action Unit
AU10 Action Unit 10 activation (Upper Lip Raiser)
AU14 Action Unit 14 activation (Dimpler)
Head_Movement Head movement value (rotation and translation)
AU_Sad Activation value of sadness-related Action Unit
datetime Date and time of data collection
depression_episode Binary label: 0 (No episode), 1 (Depression episode)
pid Participant ID (e.g., P08)

Sample Data

Here is a sample of the dataset:

AU24 Eye_Open_Avg Facial_Structure AU23 AU01 AU07 AU02 AU_Smile AU10 AU14 Head_Movement AU_Sad datetime depression_episode pid
-11.351092 0.973326 0.567567 -2.459438 -11.097750 18.764470 -13.701491 1.797318 -7.621264 -8.416746 0.093635 0.861408 2022-07-21 04:46 0 P08
-12.812418 0.824679 0.584101 -2.705608 -8.061482 13.727324 -12.742016 1.416385 -0.372542 -13.412502 0.094856 0.250375 2022-07-21 04:46 0 P08
-9.396528 0.905175 0.609942 0.163664 -5.724306 22.029821 -9.810085 1.645429 -4.372520 -3.623914 0.095847 2.480238 2022-07-21 04:46 0 P08

Universal Model Accuracy

Overall Evaluation of the KNN Model

The overall evaluation of the model based on the following metrics:

Metric Value
Accuracy 0.6563
Precision 0.6303
Recall 0.6999
F1 Score 0.6183
AUC 0.7240

Overall Evaluation of the XGBoost Model

The overall evaluation of the model based on the following metrics:

Metric Value
Accuracy 0.8167
Precision 0.8224
Recall 0.8351
F1 Score 0.7751
AUC 0.9155

Overall Evaluation of the Decision Tree Model

The overall evaluation of the model based on the following metrics:

Metric Value
Accuracy 0.8475
Precision 0.8138
Recall 0.8682
F1 Score 0.8206
AUC 0.9135

Overall Evaluation of the Naïve Bayes Model

The overall evaluation of the model based on the following metrics:

Metric Value
Accuracy 0.7291
Precision 0.6599
Recall 0.9410
F1 Score 0.7339
AUC 0.8821

Hybrid Model Accuracy

Extra Trees Classifier + XGBoost + Logistic Regression sebagai Meta Classifier

Class Precision Recall F1-Score Support
0 0.88 0.87 0.88 34,022
1 0.86 0.88 0.87 31,131
Accuracy 0.87 0.87 0.87 65,153
Macro Avg 0.87 0.87 0.87 65,153
Weighted Avg 0.87 0.87 0.87 65,153

Usage

Clone this repository:
bash git clone https://github.com/SkylarkOff/Semicolon-Model.git