Skip to content

TogetherCrew/hivemind-bot

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

hivemind-bot

This repository is made for TogetherCrew's LLM bot.

Evaluations

Run our RAG evaluations locally or in GitHub Actions. Results are written to results.csv and results_cost.json.

Run locally (Docker Compose)

Prerequisites:

  • Create a .env file with your OPENAI_API_KEY (and any other required envs).

Run:

docker compose -f docker-compose.evaluation.yml up --build

This will:

  • Start a local Qdrant at port 6333
  • Run evaluation/evaluation.py --community-id 1234 --platform-id 4321
  • Persist results.csv and results_cost.json to the repo root on your host

Run in GitHub Actions (manual)

  • Workflow: RAG Evaluation (manual trigger)
  • Steps performed:
    • Boot a Qdrant service
    • Install Python dependencies and spaCy model
    • Run the evaluation
    • Compute and publish averages (faithfulness, answer_relevancy, context_precision, context_recall) to the job summary
    • Upload results.csv and results_cost.json as artifacts

Ensure OPENAI_API_KEY is set as a repository secret.

Outputs

  • results.csv: exact evaluation results (per-sample)
  • results_cost.json: aggregate token/cost info

TODOs

  1. Fetch the Qdrant snapshot from S3 and persist it in Docker Compose evaluation
  2. Fetch the test dataset from S3 and update evaluation/evaluation.py to load from S3 (configurable root)

About

This repository is made for TogetherCrew's LLM bot.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

 
 
 

Contributors 3

  •  
  •  
  •  

Languages