Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
175 changes: 175 additions & 0 deletions deeppavlov/configs/squad/refactor_squad_torch_bert.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,175 @@
{
"dataset_reader": {
"class_name": "squad_dataset_reader",
"data_path": "{DOWNLOADS_PATH}/squad/"
},
"dataset_iterator": {
"class_name": "squad_iterator",
"seed": 1337,
"shuffle": true
},
"chainer": {
"in": [
"context_raw",
"question_raw"
],
"in_y": [
"ans_raw",
"ans_raw_start"
],
"pipe": [
{
"class_name": "torch_squad_transformers_preprocessor",
"vocab_file": "{TRANSFORMER}",
"do_lower_case": "{LOWERCASE}",
"max_seq_length": 384,
"return_tokens": true,
"in": [
"question_raw",
"context_raw"
],
"out": [
"bert_features",
"subtokens"
]
},
{
"class_name": "squad_bert_mapping",
"do_lower_case": "{LOWERCASE}",
"in": [
"context_raw",
"bert_features",
"subtokens"
],
"out": [
"subtok2chars",
"char2subtoks"
]
},
{
"class_name": "squad_bert_ans_preprocessor",
"do_lower_case": "{LOWERCASE}",
"in": [
"ans_raw",
"ans_raw_start",
"char2subtoks"
],
"out": [
"ans",
"ans_start",
"ans_end"
]
},
{
"class_name": "torch_transformers_squad",
"pretrained_bert": "{TRANSFORMER}",
"save_path": "{MODEL_PATH}/model",
"load_path": "{MODEL_PATH}/model",
"optimizer": "AdamW",
"optimizer_parameters": {
"lr": 2e-05,
"weight_decay": 0.01,
"betas": [
0.9,
0.999
],
"eps": 1e-06
},
"learning_rate_drop_patience": 2,
"learning_rate_drop_div": 2.0,
"in": [
"bert_features"
],
"in_y": [
"ans_start",
"ans_end"
],
"out": [
"ans_start_predicted",
"ans_end_predicted",
"logits"
]
},
{
"class_name": "squad_bert_ans_postprocessor",
"in": [
"ans_start_predicted",
"ans_end_predicted",
"context_raw",
"bert_features",
"subtok2chars",
"subtokens"
],
"out": [
"ans_predicted",
"ans_start_predicted",
"ans_end_predicted"
]
}
],
"out": [
"ans_predicted",
"ans_start_predicted",
"logits"
]
},
"train": {
"show_examples": false,
"evaluation_targets": [
"valid"
],
"log_every_n_batches": 250,
"val_every_n_batches": 500,
"batch_size": 10,
"pytest_max_batches": 2,
"pytest_batch_size": 5,
"validation_patience": 10,
"metrics": [
{
"name": "squad_v1_f1",
"inputs": [
"ans",
"ans_predicted"
]
},
{
"name": "squad_v1_em",
"inputs": [
"ans",
"ans_predicted"
]
},
{
"name": "squad_v2_f1",
"inputs": [
"ans",
"ans_predicted"
]
},
{
"name": "squad_v2_em",
"inputs": [
"ans",
"ans_predicted"
]
}
],
"class_name": "torch_trainer"
},
"metadata": {
"variables": {
"LOWERCASE": true,
"TRANSFORMER": "allenai/longformer-base-4096",
"ROOT_PATH": "~/.deeppavlov",
"DOWNLOADS_PATH": "{ROOT_PATH}/downloads",
"MODELS_PATH": "{ROOT_PATH}/models",
"MODEL_PATH": "{MODELS_PATH}/squad_torch_bert/{TRANSFORMER}"
},
"download": [
{
"url": "http://files.deeppavlov.ai/v1/squad/squad_torch_bert.tar.gz",
"subdir": "{ROOT_PATH}/models"
}
]
}
}
5 changes: 4 additions & 1 deletion deeppavlov/models/preprocessors/squad_preprocessor.py
Original file line number Diff line number Diff line change
Expand Up @@ -404,7 +404,10 @@ def __call__(self, contexts, bert_features, *args, **kwargs):
subtokens = args[0][batch_counter]
else:
subtokens = features.tokens
context_start = subtokens.index('[SEP]') + 1
if '[SEP]' in subtokens:
context_start = subtokens.index('[SEP]') + 1
else:
context_start = subtokens.index('<s>') + 1
idx = 0
subtok2char: Dict[int, int] = {}
char2subtok: Dict[int, int] = {}
Expand Down
8 changes: 6 additions & 2 deletions deeppavlov/models/torch_bert/torch_transformers_squad.py
Original file line number Diff line number Diff line change
Expand Up @@ -123,12 +123,14 @@ def train_on_batch(self, features: List[InputFeatures], y_st: List[List[int]], y
b_input_ids = torch.cat(input_ids, dim=0).to(self.device)
b_input_masks = torch.cat(input_masks, dim=0).to(self.device)
b_input_type_ids = torch.cat(input_type_ids, dim=0).to(self.device)
if any(x in self.pretrained_bert for x in ['roberta', 'distilbert', 'bart', 'longformer']):
b_input_type_ids = b_input_type_ids.unsqueeze(1).expand(-1, b_input_ids.shape[-1])

y_st = [x[0] for x in y_st]
y_end = [x[0] for x in y_end]
b_y_st = torch.from_numpy(np.array(y_st)).to(self.device)
b_y_end = torch.from_numpy(np.array(y_end)).to(self.device)

input_ = {
'input_ids': b_input_ids,
'attention_mask': b_input_masks,
Expand Down Expand Up @@ -184,7 +186,9 @@ def __call__(self, features: List[InputFeatures]) -> Tuple[List[int], List[int],
b_input_ids = torch.cat(input_ids, dim=0).to(self.device)
b_input_masks = torch.cat(input_masks, dim=0).to(self.device)
b_input_type_ids = torch.cat(input_type_ids, dim=0).to(self.device)

if any(x in self.pretrained_bert for x in ['roberta', 'distilbert', 'bart', 'longformer']):
b_input_type_ids = b_input_type_ids.unsqueeze(1).expand(-1, b_input_ids.shape[-1])

input_ = {
'input_ids': b_input_ids,
'attention_mask': b_input_masks,
Expand Down