Hallucination based protein design method with Alphafold2 as an oracle and SOLeNNoID discriminator network to produce solenoid proteins.
🚧 Work in progress.. 🚧
git clone https://github.com/yourusername/InSilicoEvolution.git
cd InSilicoEvolution
python3 src/main.py \
--parent_dir /path/to/output \
--population_size 20 \
--rounds 50 \
--solenoid_type alphabeta
Argument | Description | Default |
---|---|---|
--parent_dir |
Root directory for input/output | . |
--input_dir |
Input FASTA folder name | in_silico_evolution_input |
--output_dir |
ColabFold output folder name | in_silico_evolution_output |
--final_output_dir |
Where final results are stored | output_statistics |
--num_repeats |
Repeats of the sequence in FASTA | 6 |
--population_size |
Genetic algorithm population size | 10 |
--parent_strategy |
Parent selection strategy | wright-fisher |
--beta |
Mutation strength parameter | 0.1 |
--children_proportion |
Proportion of children per generation | 0.8 |
--rounds |
Number of design rounds | 30 |
--sequences_batch_size |
Number of sequences processed per batch | 1 |
--model_queries_per_batch |
Number of queries per generation | 30 |
--starting_sequence |
Provide a starting sequence | "" (auto-generated) |
--sequence_length |
Length of generated starting sequence | 30 |
--min_solenoid |
Threshold for solenoid confidence | 0.6 |
--min_plddt |
Threshold for pLDDT confidence | 0.7 |
--solenoid_type |
Solenoid class to target (beta , alphabeta , alpha ) |
beta |