Skip to content

geo-smart/SnowCast

Repository files navigation

Workflow Badge

Workflow Name: snowcast_wormhole

Description

The complete workflow for snowcast workflow creation, train, test, validation, deploy, predict.

Processes

data_sentinel2, model_creation_lstm, model_creation_ghostnet, data_integration, model_train_validate, model_predict, data_terrainFeatures, data_gee_modis_station_only, data_gee_sentinel1_station_only, data_associate_station_grid_cell, data_gee_modis_real_time, data_gee_sentinel1_real_time, base_hole, data_gee_gridmet_station_only, data_gee_gridmet_real_time, model_creation_xgboost, testing_data_integration, snowcast_utils, model_create_kehan, data_snotel_real_time, all_dependencies, data_WUS_UCLA_SR, data_nsidc_4km_swe, model_creation_et, data_snotel_station_only, model_creation_rf, model_creation_pycaret, model_creation_autokeras, model_creation_autopytorch, western_us_dem.py, download_srtm_1arcsec (caution!), gridmet_testing, create_output_tif_template, resample_dem, convert_results_to_images, deploy_images_to_website, training_feature_selection, amsr_testing_realtime, perform_download.sh, merge_custom_traning_range, training_data_range, amsr_features, amsr_swe_data_download, install_dependencies, model_evaluation, interpret_model_results, train_test_pattern_compare, correct_slope, convert_to_time_series, data_merge_hackweek, data_gee_smap_station_only, data_merge_hackweek_testing, training_sanity_check, fSCA_training, fsCA_testing, fsca_py, fSCA_training_extract_data, data_ghcnd_station_only, mod_water_mask, prepare_water_mask_template, download_modis_09, data_mod09_extract_csvs, duplicated_feature_selection, train_self_attention_xgb_slurm, train_xgb_slurm, train_novel_transformerxgb, predict_transformerxgb, bttf_swe_predict, bttf_train, xgb_train, xgb_predict, snodas_test, transformer_snodas_train, snodas_tabnet, snodas_testing_realtime, snodas_tabnet_slurm, add_snodas_mask_column, snodas_fttransformer, snodas_dnn_new, base_nn_hole, clip_basins_for_eval, snodas_resnet, clip_basins_swe_sh, clipped_geotif_to_netcdf, self-supervision-train, bttf_train_snodas

Process Descriptions

|-------------------------------------------------------------|

Process Name Description
data_sentinel2 No description available
model_creation_lstm python
model_creation_ghostnet python
data_integration No description available
model_train_validate No description available
model_predict No description available
data_terrainFeatures No description available
data_gee_modis_station_only No description available
data_gee_sentinel1_station_only No description available
data_associate_station_grid_cell No description available
data_gee_modis_real_time No description available
data_gee_sentinel1_real_time No description available
base_hole No description available
data_gee_gridmet_station_only No description available
data_gee_gridmet_real_time No description available
model_creation_xgboost No description available
testing_data_integration No description available
snowcast_utils No description available
model_create_kehan No description available
data_snotel_real_time No description available
all_dependencies No description available
data_WUS_UCLA_SR No description available
data_nsidc_4km_swe No description available
model_creation_et No description available
data_snotel_station_only No description available
model_creation_rf No description available
model_creation_pycaret No description available
model_creation_autokeras No description available
model_creation_autopytorch No description available
western_us_dem.py No description available
download_srtm_1arcsec (caution!) No description available
gridmet_testing No description available
create_output_tif_template No description available
resample_dem No description available
convert_results_to_images No description available
deploy_images_to_website No description available
training_feature_selection No description available
amsr_testing_realtime No description available
perform_download.sh No description available
merge_custom_traning_range No description available
training_data_range No description available
amsr_features No description available
amsr_swe_data_download No description available
install_dependencies No description available
model_evaluation No description available
interpret_model_results No description available
train_test_pattern_compare No description available
correct_slope No description available
convert_to_time_series No description available
data_merge_hackweek No description available
data_gee_smap_station_only No description available
data_merge_hackweek_testing No description available
training_sanity_check No description available
fSCA_training No description available
fsCA_testing No description available
fsca_py No description available
fSCA_training_extract_data No description available
data_ghcnd_station_only No description available
mod_water_mask No description available
prepare_water_mask_template No description available
download_modis_09 No description available
data_mod09_extract_csvs No description available
duplicated_feature_selection python
train_self_attention_xgb_slurm No description available
train_xgb_slurm No description available
train_novel_transformerxgb No description available
predict_transformerxgb No description available
bttf_swe_predict No description available
bttf_train No description available
xgb_train No description available
xgb_predict No description available
snodas_test No description available
transformer_snodas_train No description available
snodas_tabnet No description available
snodas_testing_realtime No description available
snodas_tabnet_slurm No description available
add_snodas_mask_column No description available
snodas_fttransformer No description available
snodas_dnn_new No description available
base_nn_hole No description available
clip_basins_for_eval No description available
snodas_resnet No description available
clip_basins_swe_sh No description available
clipped_geotif_to_netcdf No description available
self-supervision-train No description available
bttf_train_snodas No description available
-------------------------------------------------------------

Steps to use the workflow

This section provides detailed instructions on how to use the workflow. Follow these steps to set up and execute the workflow using Geoweaver.

Step-by-Step Instructions

Step 1: Download the zip file

Step 2: Import the Workflow into Geoweaver

Open Geoweaver running on your local machine. video guidance

  1. Click on "Weaver" in the top navigation bar.
  2. A workspace to add a workflow opens up. Select the "Import" icon in the top navigation bar.
  3. Choose the downloaded zip file4. Click on "Start" to upload the file. If the file is valid, a prompt will ask for your permission to upload. Click "OK".
  4. Once the file is uploaded, Geoweaver will create a new workflow.

Step 3: Execute the Workflow

  1. Click on the execute icon in the top navigation bar to start the workflow execution process.video guidance
  2. A wizard will open where you need to select the video guidance and environment video guidance.
  3. Click on "Execute" to initiate the workflow. Enter the required password when prompted and click "Confirm" to start executing the workflow.

Step 4: Monitor Execution and View Results

  1. The workflow execution will begin.
  2. Note: Green indicates the process is successful, Yellow indicates the process is running, and Red indicates the process has failed.
  3. Once the execution is complete, the results will be available immediately.

By following these steps, you will be able to set up and execute the snow cover mapping workflow using Geoweaver.

About

SnowCast team SkiingPeople

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 8