Skip to content
Merged
Show file tree
Hide file tree
Changes from 8 commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -116,7 +116,7 @@
"librosa",
"numpy",
"parameterized",
"peft>=0.15.0",
"peft>=0.17.0",
"protobuf>=3.20.3,<4",
"pytest",
"pytest-timeout",
Expand Down
2 changes: 1 addition & 1 deletion src/diffusers/dependency_versions_table.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,7 @@
"librosa": "librosa",
"numpy": "numpy",
"parameterized": "parameterized",
"peft": "peft>=0.15.0",
"peft": "peft>=0.17.0",
"protobuf": "protobuf>=3.20.3,<4",
"pytest": "pytest",
"pytest-timeout": "pytest-timeout",
Expand Down
4 changes: 3 additions & 1 deletion src/diffusers/loaders/peft.py
Original file line number Diff line number Diff line change
Expand Up @@ -319,7 +319,9 @@ def map_state_dict_for_hotswap(sd):
# it to None
incompatible_keys = None
else:
inject_adapter_in_model(lora_config, self, adapter_name=adapter_name, **peft_kwargs)
inject_adapter_in_model(
lora_config, self, adapter_name=adapter_name, state_dict=state_dict, **peft_kwargs
)
incompatible_keys = set_peft_model_state_dict(self, state_dict, adapter_name, **peft_kwargs)

if self._prepare_lora_hotswap_kwargs is not None:
Expand Down
38 changes: 0 additions & 38 deletions src/diffusers/utils/peft_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -197,20 +197,6 @@ def get_peft_kwargs(
"lora_bias": lora_bias,
}

# Example: try load FusionX LoRA into Wan VACE
exclude_modules = _derive_exclude_modules(model_state_dict, peft_state_dict, adapter_name)
if exclude_modules:
if not is_peft_version(">=", "0.14.0"):
msg = """
It seems like there are certain modules that need to be excluded when initializing `LoraConfig`. Your current `peft`
version doesn't support passing an `exclude_modules` to `LoraConfig`. Please update it by running `pip install -U
peft`. For most cases, this can be completely ignored. But if it seems unexpected, please file an issue -
https://github.com/huggingface/diffusers/issues/new
"""
logger.debug(msg)
else:
lora_config_kwargs.update({"exclude_modules": exclude_modules})

return lora_config_kwargs


Expand Down Expand Up @@ -388,27 +374,3 @@ def _maybe_warn_for_unhandled_keys(incompatible_keys, adapter_name):

if warn_msg:
logger.warning(warn_msg)


def _derive_exclude_modules(model_state_dict, peft_state_dict, adapter_name=None):
"""
Derives the modules to exclude while initializing `LoraConfig` through `exclude_modules`. It works by comparing the
`model_state_dict` and `peft_state_dict` and adds a module from `model_state_dict` to the exclusion set if it
doesn't exist in `peft_state_dict`.
"""
if model_state_dict is None:
return
all_modules = set()
string_to_replace = f"{adapter_name}." if adapter_name else ""

for name in model_state_dict.keys():
if string_to_replace:
name = name.replace(string_to_replace, "")
if "." in name:
module_name = name.rsplit(".", 1)[0]
all_modules.add(module_name)

target_modules_set = {name.split(".lora")[0] for name in peft_state_dict.keys()}
exclude_modules = list(all_modules - target_modules_set)

return exclude_modules
27 changes: 27 additions & 0 deletions tests/models/transformers/test_models_transformer_flux.py
Original file line number Diff line number Diff line change
Expand Up @@ -172,6 +172,33 @@ def test_gradient_checkpointing_is_applied(self):
expected_set = {"FluxTransformer2DModel"}
super().test_gradient_checkpointing_is_applied(expected_set=expected_set)

# The test exists for cases like
# https://github.com/huggingface/diffusers/issues/11874
def test_lora_exclude_modules(self):
from peft import LoraConfig, get_peft_model_state_dict, inject_adapter_in_model, set_peft_model_state_dict

lora_rank = 4
target_module = "single_transformer_blocks.0.proj_out"
adapter_name = "foo"
init_dict, _ = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**init_dict).to(torch_device)

state_dict = model.state_dict()
target_mod_shape = state_dict[f"{target_module}.weight"].shape
lora_state_dict = {
f"{target_module}.lora_A.weight": torch.ones(lora_rank, target_mod_shape[1]) * 22,
f"{target_module}.lora_B.weight": torch.ones(target_mod_shape[0], lora_rank) * 33,
}
config = LoraConfig(
r=lora_rank, target_modules=["single_transformer_blocks.0.proj_out"], exclude_modules=["proj_out"]
)
inject_adapter_in_model(config, model, adapter_name=adapter_name, state_dict=lora_state_dict)
set_peft_model_state_dict(model, lora_state_dict, adapter_name)
retrieved_lora_state_dict = get_peft_model_state_dict(model, adapter_name=adapter_name)
assert len(retrieved_lora_state_dict) == len(lora_state_dict)
assert (retrieved_lora_state_dict["single_transformer_blocks.0.proj_out.lora_A.weight"] == 22).all()
assert (retrieved_lora_state_dict["single_transformer_blocks.0.proj_out.lora_B.weight"] == 33).all()


class FluxTransformerCompileTests(TorchCompileTesterMixin, unittest.TestCase):
model_class = FluxTransformer2DModel
Expand Down
Loading