Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions examples/dreambooth/train_dreambooth_lora_sd3.py
Original file line number Diff line number Diff line change
Expand Up @@ -1750,8 +1750,8 @@ def get_sigmas(timesteps, n_dim=4, dtype=torch.float32):
if args.train_text_encoder:
prompt_embeds, pooled_prompt_embeds = encode_prompt(
text_encoders=[text_encoder_one, text_encoder_two, text_encoder_three],
tokenizers=[None, None, tokenizer_three],
prompt=args.instance_prompt,
tokenizers=[None, None, None],
prompt=prompts,
max_sequence_length=args.max_sequence_length,
text_input_ids_list=[tokens_one, tokens_two, tokens_three],
)
Expand Down
28 changes: 17 additions & 11 deletions examples/dreambooth/train_dreambooth_sd3.py
Original file line number Diff line number Diff line change
Expand Up @@ -875,15 +875,20 @@ def _encode_prompt_with_t5(
prompt = [prompt] if isinstance(prompt, str) else prompt
batch_size = len(prompt)

text_inputs = tokenizer(
prompt,
padding="max_length",
max_length=max_sequence_length,
truncation=True,
add_special_tokens=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
if tokenizer is not None:
text_inputs = tokenizer(
prompt,
padding="max_length",
max_length=max_sequence_length,
truncation=True,
add_special_tokens=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
else:
if text_input_ids is None:
raise ValueError("text_input_ids must be provided when the tokenizer is not specified")

prompt_embeds = text_encoder(text_input_ids.to(device))[0]

dtype = text_encoder.dtype
Expand Down Expand Up @@ -1604,8 +1609,9 @@ def get_sigmas(timesteps, n_dim=4, dtype=torch.float32):
else:
prompt_embeds, pooled_prompt_embeds = encode_prompt(
text_encoders=[text_encoder_one, text_encoder_two, text_encoder_three],
tokenizers=None,
prompt=None,
tokenizers=[None, None, None],
prompt=prompts,
max_sequence_length=args.max_sequence_length,
text_input_ids_list=[tokens_one, tokens_two, tokens_three],
)
model_pred = transformer(
Expand Down
Loading