ONNX Adapter for google-ai-edge/model-explorer
pip install --upgrade model-explorer-onnxmodel-explorer --extensions=model_explorer_onnx
# Or as a shortcut
onnxvis
# Supply model path
onnxvis model.onnxNote
Model Explorer only supports WSL on Windows.
Read more on the Model Explorer User Guide.
Graph input/output/initializers in ONNX are values (edges), not nodes. A node is displayed here for visualization. Graph inputs that are initialized by initializers are displayed as InitializedInput, and are displayed closer to nodes that use them.
Get node color themes here
Note
verify_onnx_program requires PyTorch 2.7 or newer
import torch
from torch.onnx.verification import verify_onnx_program
from model_explorer_onnx.torch_utils import save_node_data_from_verification_info
# Export the and save model
onnx_program = torch.onnx.export(model, args, dynamo=True)
onnx_program.save("model.onnx")
verification_infos = verify_onnx_program(onnx_program, compare_intermediates=True)
# Produce node data for Model Explorer for visualization
save_node_data_from_verification_info(
    verification_infos, onnx_program.model, model_name="model"
)You can then use Model Explorer to visualize the results by loading the generated node data files:
onnxvis model.onnx --node_data_paths=model_max_abs_diff.json,model_max_rel_diff.json 
 
 
 
 
 
