Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
40 changes: 40 additions & 0 deletions examples/index_fit_example.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,40 @@
#!/usr/bin/env python

from sklearn.decomposition import PCA
import umap
from sklearn.datasets import fetch_openml
import matplotlib.pyplot as plt
import seaborn as sns

# install hnswlib with pip install hnswlib
# or update to use any other index (e.g., nndescent)
import hnswlib

sns.set(context="paper", style="white")

mnist = fetch_openml("mnist_784", version=1)

sample_size = 70000

# create a knn index
knn_index = hnswlib.Index(space='l2', dim=mnist.data.shape[1])
knn_index.init_index(max_elements=sample_size, ef_construction=100, M=16)
knn_index.add_items(mnist.data.values[:sample_size])

knn_indices, knn_dists = knn_index.knn_query(mnist.data.values[:sample_size], k=15)


pca_init = PCA(n_components=2).fit_transform(mnist.data.values[:sample_size])

reducer = umap.UMAP(random_state=42, n_neighbors=15,
precomputed_knn=(knn_indices, knn_dists),
verbose=True, n_jobs=-1, init=pca_init, metric="euclidean")
embedding = reducer.fit_transform_index()

fig, ax = plt.subplots(figsize=(12, 10))
color = mnist.target[:sample_size].astype(int)
plt.scatter(embedding[:, 0], embedding[:, 1], c=color, cmap="Spectral", s=0.1)
plt.setp(ax, xticks=[], yticks=[])
plt.title("MNIST data embedded into two dimensions by UMAP", fontsize=18)

plt.show()
Loading