Style Learning and Latent Editing (StyLLE) is a method for stylizing autoregressive generation of decoder-only transformer models, based on the paper DRESSing Up LLM: Efficient Stylized Question-Answering via Style Subspace Editing.
conda create -n stylle python=3.12.3
conda activate stylle
pip install -r requirements.txt
bash run.sh <dataset> <model_dir> <assets_dir>
<dataset>
: Specifies the dataset to use (e.g., "DRC", "Shakespeare").<model_dir>
: Specifies the directory containing the pre-trained model.<assets_dir>
: Specifies the directory for generated assets specific to the model and dataset.
All experiment logs are available here.