Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
164 changes: 69 additions & 95 deletions mapie/regression/quantile_regression.py
Original file line number Diff line number Diff line change
Expand Up @@ -346,75 +346,45 @@ def _check_cv(
"Invalid cv method, only valid method is ``split``."
)

def _check_calib_set(
def _train_calib_split(
self,
X: ArrayLike,
y: ArrayLike,
sample_weight: Optional[ArrayLike] = None,
X_calib: Optional[ArrayLike] = None,
y_calib: Optional[ArrayLike] = None,
calib_size: Optional[float] = 0.3,
random_state: Optional[Union[int, np.random.RandomState, None]] = None,
shuffle: Optional[bool] = True,
stratify: Optional[ArrayLike] = None,
) -> Tuple[
ArrayLike, ArrayLike, ArrayLike, ArrayLike, Optional[ArrayLike]
]:
"""
Check if a calibration set has already been defined, if not, then
we define one using the ``train_test_split`` method.

Parameters
----------
Same definition of parameters as for the ``fit`` method.

Returns
-------
Tuple[ArrayLike, ArrayLike, ArrayLike, ArrayLike, ArrayLike]
- [0]: ArrayLike of shape (n_samples_*(1-calib_size), n_features)
X_train
- [1]: ArrayLike of shape (n_samples_*(1-calib_size),)
y_train
- [2]: ArrayLike of shape (n_samples_*calib_size, n_features)
X_calib
- [3]: ArrayLike of shape (n_samples_*calib_size,)
y_calib
- [4]: ArrayLike of shape (n_samples_,)
sample_weight_train
"""
if X_calib is None or y_calib is None:
if sample_weight is None:
X_train, X_calib, y_train, y_calib = train_test_split(
X,
y,
test_size=calib_size,
random_state=random_state,
shuffle=shuffle,
stratify=stratify
)
sample_weight_train = sample_weight
else:
(
X_train,
X_calib,
y_train,
y_calib,
sample_weight_train,
_,
) = train_test_split(
X,
y,
sample_weight,
test_size=calib_size,
random_state=random_state,
shuffle=shuffle,
stratify=stratify
)
if sample_weight is None:
X_train, X_calib, y_train, y_calib = train_test_split(
X,
y,
test_size=calib_size,
random_state=random_state,
shuffle=shuffle,
stratify=stratify
)
sample_weight_train = sample_weight
else:
X_train, y_train, sample_weight_train = X, y, sample_weight
X_train, X_calib = cast(ArrayLike, X_train), cast(ArrayLike, X_calib)
y_train, y_calib = cast(ArrayLike, y_train), cast(ArrayLike, y_calib)
sample_weight_train = cast(ArrayLike, sample_weight_train)
(
X_train,
X_calib,
y_train,
y_calib,
sample_weight_train,
_,
) = train_test_split(
X,
y,
sample_weight,
test_size=calib_size,
random_state=random_state,
shuffle=shuffle,
stratify=stratify
)
return X_train, y_train, X_calib, y_calib, sample_weight_train

def _check_prefit_params(
Expand Down Expand Up @@ -547,13 +517,12 @@ def fit(
MapieQuantileRegressor
The model itself.
"""

self.initialize_fit()
self._initialize_fit_conformalize()

if self.cv == "prefit":
X_calib, y_calib = self.prefit_estimators(X, y)
X_calib, y_calib = X, y
else:
X_calib, y_calib = self.fit_estimators(
X_calib, y_calib = self._fit_estimators(
X=X,
y=y,
sample_weight=sample_weight,
Expand All @@ -571,26 +540,18 @@ def fit(

return self

def initialize_fit(self) -> None:
def _initialize_fit_conformalize(self) -> None:
self.cv = self._check_cv(cast(str, self.cv))
self.alpha_np = self._check_alpha(self.alpha)
self.estimators_: List[RegressorMixin] = []

def prefit_estimators(
self,
X: ArrayLike,
y: ArrayLike
) -> Tuple[ArrayLike, ArrayLike]:

def _initialize_and_check_prefit_estimators(self) -> None:
estimator = cast(List, self.estimator)
self._check_prefit_params(estimator)
self.estimators_ = list(estimator)
self.single_estimator_ = self.estimators_[2]

X_calib, y_calib = indexable(X, y)
return X_calib, y_calib

def fit_estimators(
def _fit_estimators(
self,
X: ArrayLike,
y: ArrayLike,
Expand All @@ -604,30 +565,39 @@ def fit_estimators(
stratify: Optional[ArrayLike] = None,
**fit_params,
) -> Tuple[ArrayLike, ArrayLike]:
"""
This method:
- Creates train and calib sets
- Checks adn casts params, including the train set
- Fit the 3 estimators
- Returns the calib set
"""

self._check_parameters()
checked_estimator = self._check_estimator(self.estimator)
random_state = check_random_state(random_state)
X, y = indexable(X, y)

results = self._check_calib_set(
X,
y,
sample_weight,
X_calib,
y_calib,
calib_size,
random_state,
shuffle,
stratify,
)
if X_calib is None or y_calib is None:
(
X_train, y_train, X_calib, y_calib, sample_weight_train
) = self._train_calib_split(
X,
y,
sample_weight,
calib_size,
random_state,
shuffle,
stratify,
)
else:
X_train, y_train, sample_weight_train = X, y, sample_weight

X_train, y_train, X_calib, y_calib, sample_weight_train = results
X_train, y_train = cast(ArrayLike, X_train), cast(ArrayLike, y_train)
sample_weight_train = cast(ArrayLike, sample_weight_train)
X_train, y_train = indexable(X_train, y_train)
X_calib, y_calib = indexable(X_calib, y_calib)
y_train, y_calib = _check_y(y_train), _check_y(y_calib)
self.n_calib_samples = _num_samples(y_calib)
check_alpha_and_n_samples(self.alpha, self.n_calib_samples)
y_train = _check_y(y_train)

sample_weight_train, X_train, y_train = check_null_weight(
sample_weight_train,
X_train,
Expand Down Expand Up @@ -660,9 +630,6 @@ def fit_estimators(
)
self.single_estimator_ = self.estimators_[2]

X_calib = cast(ArrayLike, X_calib)
y_calib = cast(ArrayLike, y_calib)

return X_calib, y_calib

def conformalize(
Expand All @@ -674,24 +641,31 @@ def conformalize(
groups: Optional[ArrayLike] = None,
**kwargs: Any,
) -> MapieRegressor:
if self.cv == "prefit":
self._initialize_and_check_prefit_estimators()

X_calib, y_calib = cast(ArrayLike, X), cast(ArrayLike, y)
X_calib, y_calib = indexable(X_calib, y_calib)
y_calib = _check_y(y_calib)

self.n_calib_samples = _num_samples(y)
self.n_calib_samples = _num_samples(y_calib)
check_alpha_and_n_samples(self.alpha, self.n_calib_samples)

y_calib_preds = np.full(
shape=(3, self.n_calib_samples),
fill_value=np.nan
)

for i, est in enumerate(self.estimators_):
y_calib_preds[i] = est.predict(X, **kwargs).ravel()
y_calib_preds[i] = est.predict(X_calib, **kwargs).ravel()

self.conformity_scores_ = np.full(
shape=(3, self.n_calib_samples),
fill_value=np.nan
)

self.conformity_scores_[0] = y_calib_preds[0] - y
self.conformity_scores_[1] = y - y_calib_preds[1]
self.conformity_scores_[0] = y_calib_preds[0] - y_calib
self.conformity_scores_[1] = y_calib - y_calib_preds[1]
self.conformity_scores_[2] = np.max(
[
self.conformity_scores_[0],
Expand Down
10 changes: 6 additions & 4 deletions mapie/tests/test_quantile_regression.py
Original file line number Diff line number Diff line change
Expand Up @@ -470,11 +470,13 @@ def test_for_small_dataset() -> None:
estimator=qt,
alpha=0.1
)
X_calib_toy_small = X_calib_toy[:2]
y_calib_toy_small = y_calib_toy[:2]
mapie_reg.fit(
np.array([1, 2, 3]),
np.array([2, 2, 3]),
X_calib=np.array([3, 5]),
y_calib=np.array([2, 3])
X_train_toy,
y_train_toy,
X_calib=X_calib_toy_small,
y_calib=y_calib_toy_small
)


Expand Down
Loading