Skip to content

shubhamjagtap2126/Machine-Learning-Practice

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

44 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Machine Learning with Python & R = Data Science

A brief description of what this project

Features

Features

  • Part 1: Data Preprocessing in R

  • Part 2: Regression

    • Simple Linear Regression
    • Multiple Linear Regression
    • Polynomial Regression
    • Support Vector Regression (SVR)
    • Decision Tree Regression
    • Random Forest Regression
    • Evaluating Regression Models Performance
    • Regression Model Selection in Python
    • Regression Model Selection in R
  • Part 3: Classification

    • Logistic Regression i
    • K-Nearest Neighbors (K-NN)
    • Support Vector Machine (SVM)
    • Kernel SVM
    • Naive Bayes
    • Decision Tree Classification
    • Random Forest Classification
    • Classification Model Selection in Python
    • Evaluating Classification Models Performance
  • Part 4: Clustering

    • K - Means Clustering
    • Hierarchical Clustering
  • Part 5: Association Rule Learning

    • Apriori
    • Eclat
  • Part 6: Reinforcement Learning

    • Upper Confidence Bound (UCB)
    • Thompson Sampling
  • Part 7: Natural Language Processing

    • Part 8: Deep Learning
    • Artificial Neural Networks
    • Convolutional Neural Networks
  • Part 9: Dimensionality Reduction

    • Principal Component Analysis (PCA)
    • Linear Discriminant Analysis (LDA)
    • Kernel PCA
  • Part 10: Model Selection & Boosting

    • Model Selection
    • XGBoost
    • Bonus Lectures

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published