Resources for MMA, MMAI, and GMMA 869
| Name | Source | Instances | Features | Target |
|---|---|---|---|---|
| diabetes | Kaggle | 769 | ID: 1 Numeric: 8 |
diabetes0: 65%1: 35% |
| German Credit | UCI | 1000 | Numeric: 61 | ClassGood: 70%Bad:35% |
| HR | UCI | 14999 | Numeric: 7 Categorical: 2 |
left0: 76%1: 24% |
| Adult (1994 USA Census) | UCI | 32561 | Numeric: 6 Categorical: 8 |
high_salary0:76%1: 24% |
| Portugese Bank Marketing | UCI | 4521 | Numeric: 7 Categorical: 9 |
yno: 88%yes: 12% |
| European Credit Card | Przemyslaw Zientala | 142403 | Time: 1 Numeric: 29 |
Class0: 99.8%1: 0.2% |
| Marketing (Synthetic) | generate_data.ipynb | 500 | Numeric: 2 | Bought0: 50%1: 50% |
| German Credit (Synthetic) | UCI | 1000 | Numeric: 48 Categorical: 8 |
BadCredit0: 70%1: 30% |
| ISLR Student Credit Default | ISLR | 10000 | ID: 1 Numeric: 2 Categorical: 1 |
defaultNo: 97%Yes: 3% |
| Mall Customers | Kaggle | 200 | ID: 1 Numeric: 3 Categorical: 1 |
N/A |
| Groceries | Machine Learning with R | 9835 | Binary: 169 | N/A |
| Orange Juice Purchase | ISLR | 1070 | ID: 1 Numeric: 17 |
PurchaseCH: 61%MM: 39% |
| Groceries | Unknown | 505 | Numeric: 4 | N/A |