Skip to content

wanghg1992/quad_comp

Repository files navigation

Compare different algorithm for quadruped

trot in place

1. introduction

1.1 classic control

  • plan: body trajectory optimization(TO)
  • control: optimized whole body control with null space projection(OP-NSP-WBC)
  • dynamic: pinocchio
  • optimal problem solver: casadi

1.2 reinforce learning

  • algorithm: ppo
    • input: robot states
    • output: foot velocity

1.3 visualization

  • rviz
    • urdf: robot
    • trajectory: body, foot
    • point: body, foot, zmp

2. install

2.1 dependency

  • install anaconda or miniconda, and new environment named py37:
- git clone [email protected]:wanghg1992/quad_comp.git --recurse-submodules
- cd quad_comp/
- conda env create -f environment.yml

2.2 install gym-quad-env

- cd quad_comp/
- pip3 install -e simulation_environment/

3. run

3.1 run classic control

roscore
./run_classic_control.sh

3.2 run rl train

roscore
./run_baseline_ppo.sh

3.3 run visualization

roscore
./run_visualization.sh

3.4 test simulation environment

roscore
./test_simulation.sh

About

compare different algorithm

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published