Project Manager AI Assistant leverages Large Language Models (LLMs) to transform simple project descriptions into comprehensive, actionable plans with tasks, dependencies, schedules, and risk assessments.
- 🤖 AI-Powered Task Generation: Automatically decomposes high-level project goals into detailed, granular tasks
- 🔗 Automated Dependency Analysis: Intelligently identifies and maps dependencies between tasks
- 📊 Dynamic Gantt Chart Visualization: Generates interactive Gantt charts for clear project timeline views
- 👥 Team-Aware Planning: Allocates tasks based on real team members' skills and profiles
⚠️ Proactive Risk Assessment: Identifies potential risks and suggests mitigation strategies- 🔌 Pluggable Architecture: Easily extend with new integrations (Jira, Asana, Slack) without touching core logic
- 📈 Real-time Progress Tracking: Monitor project progress with live updates and notifications
- 🎯 Smart Resource Allocation: Optimize team workload distribution based on skills and availability
主界面 / Main Interface 项目描述和团队信息输入界面 |
处理进度 / Processing Progress AI分析项目的实时进度显示 |
项目计划结果 / Project Plan Results 生成的详细项目计划和任务分解 |
甘特图 / Gantt Chart 可视化的项目时间线和依赖关系 |
- Python 3.9+
- OpenAI API Key
- Git
-
Clone the repository
git clone https://github.com/your-username/project-manager-assistant.git cd project-manager-assistant -
Set up virtual environment
python -m venv venv source venv/bin/activate # On Windows: venv\Scripts\activate
-
Install dependencies
pip install -r requirements.txt
-
Configure environment
cp .env.example .env # Edit .env and add your OpenAI API key # OPENAI_API_KEY="sk-..."
-
Run the application
# Start backend (FastAPI) uvicorn app.main:app --reload --host 0.0.0.0 --port 8000 # Start frontend (Streamlit) - in a new terminal streamlit run streamlit_app/app.py --server.port 8501
-
Access the application
- Frontend: http://localhost:8501
- API Documentation: http://localhost:8000/docs
- User Guide - Complete guide to using the application
- API Reference - Detailed API documentation
- Architecture Guide - System design and technical details
- Plugin Development - How to create custom plugins
- Deployment Guide - Production deployment instructions
This project is built on a powerful LangGraph-powered pluggable architecture:
project-manager-assistant/
├── app/ # Backend API (FastAPI)
│ ├── main.py # Application entry point
│ ├── models/ # Data models
│ ├── services/ # Business logic
│ └── plugins/ # Integration plugins
├── streamlit_app/ # Frontend UI (Streamlit)
│ ├── app.py # Main application
│ ├── components/ # UI components
│ └── pages/ # Application pages
├── docs/ # Documentation
├── tests/ # Test suite
└── requirements.txt # Python dependencies
- Core Engine: Sophisticated agentic workflow for planning, analysis, and optimization
- Plugin System: Independent integrations for external tools (Jira, Asana, Slack)
- API Layer: RESTful API for programmatic access
- UI Layer: Streamlit-based interactive interface
We welcome contributions from the community! Here's how you can help:
- 🐛 Report Bugs: Use our issue tracker
- 💡 Request Features: Submit feature requests via issues
- 🔧 Fix Issues: Pick up issues labeled "good first issue"
- 📝 Improve Documentation: Help make our docs better
- 🔌 Create Plugins: Develop new integrations
- 🧪 Write Tests: Improve our test coverage
- Fork the repository
- Create a feature branch:
git checkout -b feature/amazing-feature - Make your changes and add tests
- Run tests:
pytest - Commit your changes:
git commit -m 'Add amazing feature' - Push to the branch:
git push origin feature/amazing-feature - Open a Pull Request
- Follow PEP 8 for Python code
- Use Black for code formatting
- Write comprehensive tests for new features
- Update documentation for any API changes
For more details, see our Contributing Guide.
This project is licensed under the MIT License - see the LICENSE file for details.
项目管理AI助手 利用大型语言模型(LLM),将简单的项目描述转化为包含任务、依赖关系、时间安排和风险评估的全面可执行计划。
- 🤖 AI智能任务生成: 自动将高层级项目目标分解为详细的具体任务
- 🔗 自动化依赖分析: 智能识别并映射任务间的依赖关系
- 📊 动态甘特图可视化: 生成交互式甘特图,清晰展示项目时间线
- 👥 感知团队的规划: 基于真实团队成员的技能画像进行任务分配
⚠️ 前瞻性风险评估: 识别潜在风险并提出缓解策略- 🔌 插件化架构: 无需修改核心代码即可轻松扩展新集成(Jira、Asana、Slack)
- 📈 实时进度跟踪: 通过实时更新和通知监控项目进度
- 🎯 智能资源分配: 基于技能和可用性优化团队工作负载分配
- Python 3.9+
- OpenAI API 密钥
- Git
-
克隆代码仓库
git clone https://github.com/your-username/project-manager-assistant.git cd project-manager-assistant -
设置虚拟环境
python -m venv venv source venv/bin/activate # Windows系统: venv\Scripts\activate
-
安装依赖
pip install -r requirements.txt
-
配置环境变量
cp .env.example .env # 编辑 .env 文件并添加您的 OpenAI API 密钥 # OPENAI_API_KEY="sk-..."
-
运行应用
# 启动后端 (FastAPI) uvicorn app.main:app --reload --host 0.0.0.0 --port 8000 # 启动前端 (Streamlit) - 在新的终端中 streamlit run streamlit_app/app.py --server.port 8501
-
访问应用
- 前端界面: http://localhost:8501
- API文档: http://localhost:8000/docs
本项目构建于强大的 LangGraph 驱动的插件化架构之上:
project-manager-assistant/
├── app/ # 后端API (FastAPI)
│ ├── main.py # 应用入口点
│ ├── models/ # 数据模型
│ ├── services/ # 业务逻辑
│ └── plugins/ # 集成插件
├── streamlit_app/ # 前端界面 (Streamlit)
│ ├── app.py # 主应用
│ ├── components/ # UI组件
│ └── pages/ # 应用页面
├── docs/ # 文档
├── tests/ # 测试套件
└── requirements.txt # Python依赖
- 核心引擎: 复杂的智能工作流,负责规划、分析和优化
- 插件系统: 外部工具的独立集成(Jira、Asana、Slack)
- API层: 提供程序化访问的RESTful API
- UI层: 基于Streamlit的交互式界面
我们欢迎社区贡献!以下是您可以帮助的方式:
- 🐛 报告Bug: 使用我们的问题跟踪器
- 💡 请求功能: 通过issues提交功能请求
- 🔧 修复问题: 处理标记为"good first issue"的问题
- 📝 改进文档: 帮助改进我们的文档
- 🔌 创建插件: 开发新的集成
- 🧪 编写测试: 提高测试覆盖率
- Fork代码仓库
- 创建功能分支:
git checkout -b feature/amazing-feature - 进行更改并添加测试
- 运行测试:
pytest - 提交更改:
git commit -m 'Add amazing feature' - 推送到分支:
git push origin feature/amazing-feature - 创建Pull Request
更多详细信息,请参阅我们的 贡献指南。
本项目采用MIT许可证 - 详情请参阅 LICENSE 文件。



