Skip to content

AI-powered agent system that automates project initialization: task planning, dependency mapping, scheduling, and team allocation — with built-in risk awareness and self-optimization.

License

Notifications You must be signed in to change notification settings

zhangzhefang-github/project-manager-assistant

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Project Manager AI Assistant

Build Status License: MIT Python Version Code Style PRs Welcome Contributors

Your intelligent co-pilot for seamless project planning and execution

English | 中文


Project Manager AI Assistant Interface

Project Manager AI Assistant - Clean and intuitive interface


📋 Table of Contents


English

Project Manager AI Assistant leverages Large Language Models (LLMs) to transform simple project descriptions into comprehensive, actionable plans with tasks, dependencies, schedules, and risk assessments.

✨ Features

  • 🤖 AI-Powered Task Generation: Automatically decomposes high-level project goals into detailed, granular tasks
  • 🔗 Automated Dependency Analysis: Intelligently identifies and maps dependencies between tasks
  • 📊 Dynamic Gantt Chart Visualization: Generates interactive Gantt charts for clear project timeline views
  • 👥 Team-Aware Planning: Allocates tasks based on real team members' skills and profiles
  • ⚠️ Proactive Risk Assessment: Identifies potential risks and suggests mitigation strategies
  • 🔌 Pluggable Architecture: Easily extend with new integrations (Jira, Asana, Slack) without touching core logic
  • 📈 Real-time Progress Tracking: Monitor project progress with live updates and notifications
  • 🎯 Smart Resource Allocation: Optimize team workload distribution based on skills and availability

📸 Application Screenshots

Main Interface
主界面 / Main Interface
项目描述和团队信息输入界面
Processing Progress
处理进度 / Processing Progress
AI分析项目的实时进度显示
Project Plan Results
项目计划结果 / Project Plan Results
生成的详细项目计划和任务分解
Gantt Chart
甘特图 / Gantt Chart
可视化的项目时间线和依赖关系

🚀 Quick Start

Prerequisites

  • Python 3.9+
  • OpenAI API Key
  • Git

Installation

  1. Clone the repository

    git clone https://github.com/your-username/project-manager-assistant.git
    cd project-manager-assistant
  2. Set up virtual environment

    python -m venv venv
    source venv/bin/activate  # On Windows: venv\Scripts\activate
  3. Install dependencies

    pip install -r requirements.txt
  4. Configure environment

    cp .env.example .env
    # Edit .env and add your OpenAI API key
    # OPENAI_API_KEY="sk-..."
  5. Run the application

    # Start backend (FastAPI)
    uvicorn app.main:app --reload --host 0.0.0.0 --port 8000
    
    # Start frontend (Streamlit) - in a new terminal
    streamlit run streamlit_app/app.py --server.port 8501
  6. Access the application

Project Input Example

Project & Team Input

Simply provide a project description and your team's profile

📖 Documentation

🛠️ Architecture

This project is built on a powerful LangGraph-powered pluggable architecture:

project-manager-assistant/
├── app/                    # Backend API (FastAPI)
│   ├── main.py            # Application entry point
│   ├── models/            # Data models
│   ├── services/          # Business logic
│   └── plugins/           # Integration plugins
├── streamlit_app/         # Frontend UI (Streamlit)
│   ├── app.py            # Main application
│   ├── components/       # UI components
│   └── pages/           # Application pages
├── docs/                 # Documentation
├── tests/               # Test suite
└── requirements.txt     # Python dependencies

Core Components

  • Core Engine: Sophisticated agentic workflow for planning, analysis, and optimization
  • Plugin System: Independent integrations for external tools (Jira, Asana, Slack)
  • API Layer: RESTful API for programmatic access
  • UI Layer: Streamlit-based interactive interface

🤝 Contributing

We welcome contributions from the community! Here's how you can help:

Ways to Contribute

  • 🐛 Report Bugs: Use our issue tracker
  • 💡 Request Features: Submit feature requests via issues
  • 🔧 Fix Issues: Pick up issues labeled "good first issue"
  • 📝 Improve Documentation: Help make our docs better
  • 🔌 Create Plugins: Develop new integrations
  • 🧪 Write Tests: Improve our test coverage

Development Setup

  1. Fork the repository
  2. Create a feature branch: git checkout -b feature/amazing-feature
  3. Make your changes and add tests
  4. Run tests: pytest
  5. Commit your changes: git commit -m 'Add amazing feature'
  6. Push to the branch: git push origin feature/amazing-feature
  7. Open a Pull Request

Code Style

  • Follow PEP 8 for Python code
  • Use Black for code formatting
  • Write comprehensive tests for new features
  • Update documentation for any API changes

For more details, see our Contributing Guide.

📄 License

This project is licensed under the MIT License - see the LICENSE file for details.


中文

项目管理AI助手 利用大型语言模型(LLM),将简单的项目描述转化为包含任务、依赖关系、时间安排和风险评估的全面可执行计划。

✨ 功能特性

  • 🤖 AI智能任务生成: 自动将高层级项目目标分解为详细的具体任务
  • 🔗 自动化依赖分析: 智能识别并映射任务间的依赖关系
  • 📊 动态甘特图可视化: 生成交互式甘特图,清晰展示项目时间线
  • 👥 感知团队的规划: 基于真实团队成员的技能画像进行任务分配
  • ⚠️ 前瞻性风险评估: 识别潜在风险并提出缓解策略
  • 🔌 插件化架构: 无需修改核心代码即可轻松扩展新集成(Jira、Asana、Slack)
  • 📈 实时进度跟踪: 通过实时更新和通知监控项目进度
  • 🎯 智能资源分配: 基于技能和可用性优化团队工作负载分配

📸 应用截图

主界面
主界面
简洁直观的项目描述和团队信息输入界面
处理进度
处理进度
AI智能分析项目的实时进度展示
项目计划结果
项目计划结果
AI生成的详细项目计划和任务分解
甘特图
甘特图
可视化的项目时间线和任务依赖关系

🚀 快速开始

前置要求

  • Python 3.9+
  • OpenAI API 密钥
  • Git

安装步骤

  1. 克隆代码仓库

    git clone https://github.com/your-username/project-manager-assistant.git
    cd project-manager-assistant
  2. 设置虚拟环境

    python -m venv venv
    source venv/bin/activate  # Windows系统: venv\Scripts\activate
  3. 安装依赖

    pip install -r requirements.txt
  4. 配置环境变量

    cp .env.example .env
    # 编辑 .env 文件并添加您的 OpenAI API 密钥
    # OPENAI_API_KEY="sk-..."
  5. 运行应用

    # 启动后端 (FastAPI)
    uvicorn app.main:app --reload --host 0.0.0.0 --port 8000
    
    # 启动前端 (Streamlit) - 在新的终端中
    streamlit run streamlit_app/app.py --server.port 8501
  6. 访问应用

项目输入示例

项目与团队信息输入

您只需提供项目描述和团队成员简介

📖 文档

🛠️ 架构设计

本项目构建于强大的 LangGraph 驱动的插件化架构之上:

project-manager-assistant/
├── app/                    # 后端API (FastAPI)
│   ├── main.py            # 应用入口点
│   ├── models/            # 数据模型
│   ├── services/          # 业务逻辑
│   └── plugins/           # 集成插件
├── streamlit_app/         # 前端界面 (Streamlit)
│   ├── app.py            # 主应用
│   ├── components/       # UI组件
│   └── pages/           # 应用页面
├── docs/                 # 文档
├── tests/               # 测试套件
└── requirements.txt     # Python依赖

核心组件

  • 核心引擎: 复杂的智能工作流,负责规划、分析和优化
  • 插件系统: 外部工具的独立集成(Jira、Asana、Slack)
  • API层: 提供程序化访问的RESTful API
  • UI层: 基于Streamlit的交互式界面

🤝 贡献指南

我们欢迎社区贡献!以下是您可以帮助的方式:

贡献方式

  • 🐛 报告Bug: 使用我们的问题跟踪器
  • 💡 请求功能: 通过issues提交功能请求
  • 🔧 修复问题: 处理标记为"good first issue"的问题
  • 📝 改进文档: 帮助改进我们的文档
  • 🔌 创建插件: 开发新的集成
  • 🧪 编写测试: 提高测试覆盖率

开发环境设置

  1. Fork代码仓库
  2. 创建功能分支: git checkout -b feature/amazing-feature
  3. 进行更改并添加测试
  4. 运行测试: pytest
  5. 提交更改: git commit -m 'Add amazing feature'
  6. 推送到分支: git push origin feature/amazing-feature
  7. 创建Pull Request

代码规范

  • Python代码遵循 PEP 8
  • 使用 Black 进行代码格式化
  • 为新功能编写全面的测试
  • 任何API更改都要更新文档

更多详细信息,请参阅我们的 贡献指南

📄 许可证

本项目采用MIT许可证 - 详情请参阅 LICENSE 文件。


Made with ❤️ by the Project Manager AI Assistant Team

GitHub stars GitHub forks GitHub issues

About

AI-powered agent system that automates project initialization: task planning, dependency mapping, scheduling, and team allocation — with built-in risk awareness and self-optimization.

Resources

License

Contributing

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published